Ro 13–9904/001, A NOVEL POTENT AND LONG-ACTING PARENTERAL CEPHALOSPORIN*

Sir:

In recent years a number of highly active new cephalosporins have been reported. While conducting a research program on β -lactams we became interested in the effects of structural modification of the 3-heterocyclic-thiomethyl moiety on the biological activities and especially

Fig. 1. Structure of cefotaxime and SCE-1365.

the pharmacokinetic parameters in the series of 7- $\{2-(2-\text{amino-}4-\text{thiazolyl})-2-[(Z)-\text{methoxyimino}]\$ acetamido $\}$ cephalosporins. Compounds belonging to this series, such as cefotaxime^{1,2)} and

Scheme 1. Synthesis of Ro 13-9904/001.

Table 1. Physico-chemical and analytical data of Ro 13-9904/001.

- 1) Empirical formula: $C_{18}H_{16}N_8O_7S_3Na_2\cdot 3.5 H_2O$
- 2) Molecular weight: 661.59
- 3) Elemental analysis:

Calcd. C 32.68 H 3.50 N 16.94 S 14.54 H₂O 9.53 Found C 32.89 H 3.46 N 16.96 S 14.54 H₂O 9.50

- 4) Form: White crystalline powder
- 5) Melting point: >155°C (dec.)
- 6) Specific rotation: $[\alpha]_0^{25} 165^{\circ}$ (c 1, water) (calcd. for water-free substance)

Rf (silicagel F₂₅₄-precoated plate "Merck"; methanol-water, 9:1): 0.73

- 8) Solubility in water: $ca. 40 \text{ g}/100 \text{ ml } (25^{\circ}\text{C})$
- 9) pH of 20% aqueous solution: 7.1
- 10) pKa values: *ca.* 3 (COOH), 3.2 (NH₃⊕), 4.1 (enolic OH)
- 11) IR spectrum (KBr pellet): 1758 cm⁻¹ (β-lactam carbonyl)
- 12) UV spectrum (water): $\lambda_{\text{max}} = 242 \text{ nm} \ (\varepsilon = 32300), 272 \text{ nm} \ (\varepsilon = 29530)$
- 13) 1 H NMR spectrum (D₂O) (δ , ppm): 3.62 (NCH₈, s, 3), 3.98 (OCH₃, s, 3). 6.99 (5-thiazolyl-H, s, 1); the corresponding shift values for the (*E*)-isomer of Ro 13–9904/001 are 3.65, 4.11 and 7.58, respectively.

^{*} Dedicated to Dr. Otto Isler on the occasion of his 70th birthday.

Table 2. In vitro activity of Ro 13–9904/001, some structural analogues, and reference compounds (MIC μ g/ml). Medium: DST agar (Oxoid); (Haemophilus, Neisseria: DST chocolate agar)

	E. coli* R 2191	Serratia* marcescens 803–15	Enterob.* cloacae KA 1	Proteus* mirabilis 2117	Proteus* vulgaris 8313	Pseudom.* aeruginosa 2100	Pseudom.* aeruginosa 143 738	Haemoph. influenzae 3457	Neisseria gonorrhoeae BA 10	Staphyl. aureus ATCC 6538
Ro 13-9904/001	0.08	0.16	S	0.01	0.05	10	10	0.005	0.0025	5
Ro 15-0197/001	0.04	0.16	1.2	0.04	0.02	40	80	0.01	0.01	2.5
Ro 14-7746/001	0.04	0.16	2.5	0.04	0.02	40	40	0.02	0.02	2.5
Ro 14-6787/001	0.08	0.32	2.5	0.08	0.02	80	80	0.02	0.02	2.5
Ro 14-1689/001	0.04	0.16	2.5	0.08	0.02	80	80	0.01	0.02	1.2
Ro 14-8314/001	0.08	0.16	10	0.01	0.01	40	40	0.01	0.0025	10
Cefotaxime	0.04	0.16	5	0.04	0.04	20	20	0.02	0.01	2.5
SCE-1365	0.02	0.16	2.5	0.04	0.02	40	20	0.01	0.005	1.2
Cefamandole	1.2	40	40	2.5	40	>160	>160	0.63	0.16	0.16
Cefazolin	2.5	>80	08<	20	>80	>160	>160	10	2.5	0.16

SCE-1365⁸⁾ (Fig. 1), have been shown to possess excellent antibacterial properties but relatively short plasma half-lives. We have demonstrated that suitable modification of the 3-heterocyclic-thiomethyl moiety markedly affects the plasma half-life.

In this paper we report on Ro 13–9904/001, (6R, 7R) - 7 - {2 - (2 - amino - 4 - thiazolyl) - 2 - [(Z)-methoxyimino] acetamido} - 3 - {[(2,5 - dihydro - 6-hydroxy - 2 - methyl - 5 - oxo - as - triazin - 3 - yl)thio] methyl} - 8 - oxo - 5 - thia - 1 - azabicyclo[4.2.0]oct - 2 - ene-2-carboxylic acid disodium salt, and some structural congeners. The synthesis of Ro 13–9904/001 is outlined in Scheme 1.

Physico-chemical properties and analytical data of Ro 13–9904/001 suitable for characterization and identification are summarized in Table 1.

The potent *in vitro* activity of Ro 13–9904/001 against a number of representative bacterial strains in comparison with the activities of several structural analogues (Fig. 2) and the reference compounds cefotaxime*, SCE-1365*, cefamandole, and cefazolin, is presented in Table 2.

Ro 13–9904/001 was found to be highly active against a wide range of both β -lactamase-producing and non-producing Gram-negative organisms. Furthermore, excellent activity was displayed against gentamicin-resistant Gram-negative strains (Table 3).

Ro 13–9904/001 showed very low acute toxicity, the LD_{50} in mice and rats being ca. 2,200 mg/kg following i.v. administration.

The *in vivo* activity of Ro 13–9904/001 proved to be much higher than that of cefotaxime and SCE-1365 in infection models where the antibiotic was administered 2 hours before the animals were challenged with the pathogen (Table 4). These infection models were designed to identify antibiotics with a longer plasma half-life.

In contrast, the structural analogues of Ro 13–9904/001 listed in Fig. 2 behaved like cefotaxime and SCE-1365 in models where challenge with the pathogen was delayed.

The long-acting efficacy of Ro 13–9904/001 was concluded to be the consequence of its long plasma half-life, as the plasma half-life of Ro 13–9904/001 in rats was demonstrated to be significantly longer than that of its structural analogues,

^{*} Both cefotaxime and SCE-1365 were synthesized in our laboratories for comparison purposes.

Fig. 2. Structure of analogues of Ro 13-9904/001.

No.	Ro 15-0197/001	Ro 14-7746/001	Ro 14-6787/001	Ro 14-1689/001	Ro 14-8314/001
R	H ₃ C _N N ₄ OCH ₃	-S_N_O	H ₃ C _N , N ₂ CH ₃ -S ² N O	-S N O CH ₃	H ₃ C N-N COO [©] Na [®]

Table 3. In vitro activity of Ro 13–9904/001 against gentamicin-resistant strains (MIC μ g/ml). Medium: DST agar (Oxoid), Inoculum: $\sim 10^5$ cells/spot (applied with a multipoint inoculator)

	Pseudomonas aeruginosa PA 3	Providencia stuartii PS 1	Proteus rettgeri R 31	E. coli 5/9 B	Serratia marcescens 70147
Ro 13-9904/001	6.3	0.003	0.05	0.19	0.39
Gentamicin	>50	50	25	12.5	50

Table 4. Activity of Ro 13-9904/001, cefotaxime, and SCE-1365 in experimental septicemia of mice.

		ED ₅₀ (mg/kg s.c.)							
Dosage time* (hours)	Serratia n	narcescens 803	-15	Proteus mirabilis 2117					
(/	Ro 13-9904/001	Cefotaxime	SCE-1365	Ro 13-9904/001	Cefotaxime	SCE-1365			
+1/+3	0.08	0.15	0.13	0.02	0.05	0.12			
-2	0.18	>10	>10	< 0.10	>10	>10			

* +: administration after bacterial challenge

-: administration prior to bacterial challenge

Table 5. Plasma half-life of Ro 13–9904/001, some structural analogues, cefotaxime, and SCE-1365 in the rat after i.v. administration of 20 mg/kg*.

Compound	t _{1/2} (min.)
Ro 13-9904/001	35
Ro 15-0197/001	12
Ro 14-7746/001	10
Ro 14-6787/001	12
Ro 14-1689/001	10
Ro 14-8314/001	22
Cefotaxime	14
SCE-1365	14

^{*} Plasma levels were determined by a microbiological assay using B. subtilis ATCC 6633 as the test organism.

as well as cefotaxime and SCE-1365 (Table 5).

Comparing the structures of the substituents at position 3 of these cephalosporins, it is assumed that the longer half-life of Ro 13–9904/001 is due to the presence of the enolate anion at the triazine moiety. Ro 14–8314/001, an isomer of Ro 13–9904/001 bearing a carboxylate anion at the triazole moiety, shows an intermediate half-life between that of Ro 13–9904/001 and those of the remaining cephalosporins which lack an anion-forming group at the 3-substituent.

In conclusion, Ro 13–9904/001 has been shown to be a potent, long-acting parenteral antibiotic with a very broad spectrum of activity.

Further detailed data regarding antibacterial, pharmacokinetic and toxicological aspects of the cephalosporin Ro 13–9904/001, which is currently undergoing clinical trials, will be published elsewhere.

Summary

Ro 13–9904/001 is a novel parenteral cephalosporin antibiotic with potent *in vitro* activity against a wide range of β -lactamase-producing and non-producing pathogens. In addition, Ro 13–9904/001 proved to possess a very long plasma half-life and, as a consequence, high prophylactic *in vivo* effectiveness.

R. REINER*

U. Weiss

U. BROMBACHER

P. LANZ

M. MONTAVON

A. FURLENMEIER

P. ANGEHRN

P. J. PROBST

Pharmaceutical Research Department F. Hoffmann-La Roche & Co., Ltd. Basle, Switzerland

(Received April 15, 1980)

References

- BUCOURT, R.; R. HEYMÈS, A. LUTZ, L. PÉNASSE & J. PERRONET: Propriétés antibiotiques inattendues dans le domaine des céphalosporines. C. R. Acad. Sc. Paris, Série D, 284: 1847~1849, 1977
- HEYMÈS, R.; A. LUTZ & E. SCHRINNER: Experimental evaluation of HR 756, a new cephalosporin derivative: Pre-clinical study. Infection 5: 259 ~ 260, 1977
- OCHIAI, M.; O. AKI, A. MORIMOTO, T. OKADA & Y. MATSUSHITA: New cephalosporin derivatives with high antibacterial activities. Chem. Pharm. Bull. 25: 3115~3117, 1977

^{*} Author to whom all correspondence should be addressed.